AEI Student Design Competition
Team 2020-03
April 15, 2020
War Memorial Hall

Project Description

Virginia Tech University

- 1924 Head House
- 1972 addition
- Over 200,000 sq. ft
- $45 million
Slide 3

DR3 Possibly make a better graphic for this slide like the Team Roster and Project Goals
Dalton Rabe, 3/8/2020

Slide 4

DR13 Background is made. Just needs to be inserted
Dalton Rabe, 3/10/2020
War Memorial Hall

Client's Requests

LEED Silver

30% Façade Energy Improvement

sDA 40%

Façade Design Integrates 1924 Head House

Natural Ventilation Strategies

Sandy Hall on Virginia Tech Campus

Project Goals

• Overall Team Goals
 • Update the user experience
 • Promote all forms of wellness
 • Create a Heart of campus
 • Be sure to bring these up throughout the presentation as often as possible
mess with opacity or outline for callout boxes

Meredith Butler, 3/8/2020
Codes & Standards

General:
- 2015 Virginia Construction Code with Amendments
- 2015 IECC – Virginia Revisions

Structural:
- ASCE 7-10 – Minimum Design Loads
- AISE Steel Construction Manual 14th Edition
- AIC 318-14

Electrical:
- 2014 NFPA 70
- IES Handbook 10th Edition

Mechanical:
- Applicable ASHRAE Standards
- Indoor Swimming Pools - ASHRAE
- Geothermal Heating & Cooling – ASHRAE
Site Orientation

45° West of North
- North façades have eastern and western sun exposure.
- Southern facades glare potential due to low angles of the sun.

Not Provided at Site
District Chilled Water

Central Plant Utilities

Provided at Site
High Pressure Steam
12.47 kV 3-Phase

https://www.facilities.vt.edu/energy-utilities/central-steam-plant.html
Hydrant Flow Test

Fire Protection System Demand

Domestic Water System Demand

Flow Hydrant Test Curve

Electrical Site Plan
Geotechnical and Geothermal

Geotechnical report
- Soil composition: disintegrated rock
- Allowable soil bearing: 6,000 PSF
- Frost depth: 2.5ft
- Lateral earth pressure: 42psf/ft

45'-60' Silt, clay, & sand
240'-255' loose limestone

4 other vertical bore projects on campus
Source: Rorrer Drilling

(2015) Department of Conservation and Economic Development

Rainwater Harvesting

- Capture **2.6M gallons** per year
- Savings of **$23,035**
Construction Considerations

- Worker safety on site
- Ease of installation
- Minimize construction time
Lighting Concept

Virginia Tech invents the **FUTURE** but does not forget the **PAST**

Façade

Head House

Original 1924 West Elevation
Façade Lighting

- Lantern effect
 - Façade preservation
 - Enhances windows
 - Draws people inwards

- Uplighting
 - Enhance vertical elements

Daylighting

Addition of Glazing

- Glazing in exercise spaces
- Operable windows in office and classrooms
- Clerestory in the natatorium
Daylighting

Addition of Skylights

- Gymnasium
- Spinning Room
- Corridors
- Collaboration Space
- Open Offices

Skylight Layout

Daylighting

Analysis

Spatial daylight autonomy
- sDA of existing building: 17%
- sDA of the Goliath's Design: 48%
Daylighting

Glare Mitigation

Honeycomb glass
 • Thin inserts to maximize view to the outdoor
 • Reduces HVAC load

Automated shading
 • Classrooms and offices

Natural Ventilation

Foehn Wind Capture

Dissipating Clouds
Foehn Winds
Adiabatic Heating
5 1/2°F per 1000'

Strategically placed louvers
Natural Ventilation
Operable Windows

Operable windows in office and classrooms

Natural Ventilation
Active Green Walls

Active green walls in Link and bouldering room
Plants selection

- Upright growing habits
- East entrance and bouldering room requires 25 to 80 footcandles
- West entrance requires 80 to 400 footcandle
- Recommended illuminance for 12 to 15 hours a day

<table>
<thead>
<tr>
<th>Light Level</th>
<th>Location in the Building</th>
<th>Artificial Light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intense Light</td>
<td>Unshaded light for most of the day</td>
<td>Range of 400 fc to 600 fc for 12 to 15 hours</td>
</tr>
<tr>
<td>Bright Light</td>
<td>Direct sun from south or west exposure where 2 or hours of direct sun</td>
<td>Range of 400 fc to 600 fc for 12 to 15 hours per day</td>
</tr>
<tr>
<td>Medium Light</td>
<td>Direct Light in morning and afternoons</td>
<td>Range of 80 fc to 400 fc for 12 to 15 hours per day</td>
</tr>
<tr>
<td>Low Light</td>
<td>North and east daylight exposure</td>
<td>Range of 25 fc to 80 fc for 12 to 15 hours per day</td>
</tr>
</tbody>
</table>

Lamp beam angle

- 30° beam angle is used toward the top of the wall
- 15° beam angle is used for half of the wall
Façade Intervention
Phase Change Insulation

Locations
• 1972 replacement
• In addition to normal insulation in wall assembly

Benefits
• Shifts peak times
• Made from renewable sources

Façade Performance

• WTWR: 0.07<0.26
• Energy Savings of 33%
 • 22% from Phase Change Insulation

1972 WALL SECTION 1972
PROPOSED WALL SECTION
Why are the bullet points on this side?
Dalton Rabe, 3/8/2020
Roof Coordination

Cooling Tower 12.6 kips
L: 8’, W:12’, H:15’

Property line sound level goals:
- Day – 60 dBA
- Night – 50 dBA

Sound barrier walls not needed
- Cost savings
- Improved equipment performance
- Reduced structural load

Total: <47 dBA
Storm Drainage Plan

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPHEMIC DRAIN</td>
</tr>
<tr>
<td></td>
<td>STORM DRAIN</td>
</tr>
<tr>
<td></td>
<td>OVERFLOW DRAIN</td>
</tr>
<tr>
<td></td>
<td>DIRECTION</td>
</tr>
</tbody>
</table>

Natatorium

Structural
- DLH joist depth

Daylighting
- Clerestory
- Frosted glazing

Mechanical
- Aluminum duct
- Condensation

Electrical
- PV modules

Acoustics
- Ceiling baffles
- Acoustical spray

Lighting
- Indirect
DR6 Adjust to match the Client Goals slide or vice versa?
Dalton Rabe, 3/8/2020
Natatorium

Natatorium Unit & Condensers

Natatorium unit
- Designed to maintain 55% RH
- 75-ton total cooling capacity
- 500 MBH heat recovery/heat rejection

Condensers
- Air-cooled

Pool pumps
- Full redundancy
- Sized for 6-hour circulation time
 - Section 407.2 2015 ISPSC

Steam heat exchanger
- 120 GPM capacity
- Sized at partial load because of heat recovery
Natatorium

Pool Foundations

Considered Conditions

8" Reinforced slab
- Minimize cracking and leaking
- Transfer the weight of water to soil

Cantilevered retaining wall

Indirect lighting
- Minimize glare
- Ease of maintenance

Class IV Illuminance
- 300 Lux required
- 392 Lux achieved
Slide 45

MB11 update detail and revit image
Meredith Butler, 3/8/2020

Slide 46

DR7 Inconsistent Key Plan
Dalton Rabe, 3/8/2020
Natatorium

Acoustics

- RT goal: 1.5 sec
- Calculated RT: 1.35 sec

Wall panels

Baffles

Acoustical spray finish

Head House

Expansion Joints

4" Floor Joints

4" Wall Joints

Floor expansion joint

Wall expansion join
Slide 47

MB12 match large call out style (nat section & client needs)
Meredith Butler, 3/8/2020

Slide 48

DR9 Why is the blended picture frame only used here?
Dalton Rabe, 3/8/2020

MB13 update the images
Meredith Butler, 3/8/2020

AL1 DONE
Ali Mujtaba Mohamed Al Lawati, 3/8/2020
Head House
Helical Piles

- Optimizing geothermal header location
- Maintaining structural integrity of Head House
Head House

Historical Preservation - Lobby

- No conditioning prior
- Underfloor air

Historical Preservation - Lighting

- Keep chandeliers from 1924
- LED replacement lamps
DR10 inconsistent key plan
Dalton Rabe, 3/8/2020
• NW concrete slab on metal deck
• Composite beams at 9'-3" O.C. maximum for floor system
• Joist at 5'-0" O.C. for roof system
Structural – Example Columns

- **HSS6x6x1/4**
- **W10x33**

Truss

- **91'-2" Span**
- **Panel points**
 - interior 9'-3"
 - end span 8'-7"
Structural

Transfer Beams Above Truss

Benefits
- Eliminates moment in chord
- Axial load member analysis

Design
- Span between floor beam where columns bear
- Carries column load to panel points

Structural – Lateral Locations
Structural – Typical Lateral Braced Frames

Typical Footing Design:

Typical sizes:
- 4'x4'
- 5'x5'
- 6'x6'

Footing thickness:
- 12 – 30''

Footing depth:
- 16'' below top of slab on grade
Why are bullet points on the right?
Dalton Rabe, 3/8/2020
Emergency Electrical Room

Normal Power One-Line
- 336 Photovoltaic modules
- 110,880 Nameplate wattage
- 15 Year payback
Lighting Controls

Layering lighting components
• Ambient lighting
• Task lighting
• Accent lighting

Lighting controls
• Occupancy sensors
• Daylight responsive controls
• Scene controls

Special Systems Overview

• Communications
• Fire Alarm
• Access Control
• Security
• Audiovisual
• Lightning Protection

Restriction Access Level 0
Restriction Access Level 1
Restriction Access Level 2
Restriction Access Level 3
Telecommunication Riser Diagram

Stacked telecommunication rooms
HVAC Load Calculations

- **Head House**
 - 63 Tons
 - 436 MBH

- **Natatorium**
 - 75 Tons
 - 316 MBH

- **Offices/Classrooms**
 - 340 Tons
 - 3477 MBH

- **Gymnasiums**
 - 57 Tons
 - 661 MBH

- **Summaries**
 - 355 SF/Tons
 - 26 BTUH/SF
Mechanical System Schematic

- HVAC System Schematic

Geothermal

- (218) ¾” bores
- 300’ depth
- 12 zones
Cooling Tower

- Sized for 26% of cooling demand
- Remaining heat rejection is covered by the bore field

Energy Recovery Ventilators

- Wheel type
- Condenser water connection for dehumidification at unit
- Effectiveness of 84-92%
- Instant to 2.5-year simple payback
- Provides +$34,000 energy savings per year
Mechanical Noise

- Silencers at intake and discharge of ERVs

Secondary Systems

- Water Source Heat Pumps
 - 1-1/2" CSR SERVING WSHPs (16 GPM)
- Water Cooled VRF
Energy Performance of the System

- 33% “free energy”
- 64% energy savings per year

Domestic Water Riser

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Demand</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUS</td>
<td>769</td>
<td>208 GPM</td>
<td>5” CW Entrance</td>
</tr>
<tr>
<td>CWFU</td>
<td>688</td>
<td>177 GPM</td>
<td>4” CW</td>
</tr>
<tr>
<td>HWFU</td>
<td>224</td>
<td>95.5 GPM</td>
<td>3” HW</td>
</tr>
<tr>
<td>WFU</td>
<td>684</td>
<td>-</td>
<td>6” SAN</td>
</tr>
</tbody>
</table>
Domestic Hot Water

Semi-instant steam water heater
• 84 GPM capacity

Acoustics

Sound Transmission Class (STC)

STC 50
Classrooms

STC 55
Exercise

STC 60
Mechanical

STC 40-45
Offices
Acoustics

Impact Insulation Class (IIC)

Gyms and exercise classrooms
- Floating wood floor
- IIC 64

Teaching weight room
- Rubber athletic flooring and underlayment
- IIC 75

Open exercise
- Rubber athletic flooring
- IIC 58

Acoustics

Reverberation Time

Gym
- Impact-resistant wall panels

Classrooms
- Acoustical ceiling tile
- Wall panels
- Carpet

<table>
<thead>
<tr>
<th>Room</th>
<th>Max Recommended RT (sec)</th>
<th>Calculated RT (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 Gym</td>
<td>1.5</td>
<td>1.07</td>
</tr>
<tr>
<td>Level 2 Gym</td>
<td>1.5</td>
<td>1.10</td>
</tr>
<tr>
<td>Classrooms</td>
<td>0.6</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Selected Systems

Structural

- **Gravity System**: Non composite roof and composite floor systems supported by steel framing and steel columns.
- **Lateral System**: Lateral loads are supported using steel braced frames and a single moment frame.
- **Foundation System**: The design includes shallow foundations, helical piles, and composite foundations.)
Electrical

Power
- 2500 A, 480/277V, 3Φ, 4 w main
- 200 kW generator

Lighting
- LED Fixtures were selected for life, efficiency and occupants’ comfort
- 48% sDA was achieved

Systems
- Lightning Protection System
- Speaker/Strobe Fire Alarm System

Mechanical

Primary Systems
- Geothermal field + cooling tower + steam heat exchanger = Hybrid System

Secondary Systems
- Water Source Heat Pumps
- Water Cooled VRF

Rain Harvesting
- Cistern
LEED Certification

LEED v4 for BD+C: New Construction and Major Renovation

Project: CheckMark

LEED Certification Points

- **Materials and Resources:**
 - **Storage and Collection of Recyclables:** Required
 - **Construction and Demolition Waste Management:** Planning Required
 - **Building Lifecycle Impact Reduction:** New Material Product Disclosure and Optimization (Environmental Product) Required
 - **Building Lifecycle Impact Reduction:** New Material Product Disclosure and Optimization (Material Transparency) Required
 - **Building Lifecycle Impact Reduction:** New Material Product Disclosure and Optimization (Material Innovation) Required
 - **Construction and Demolition Waste Management:** Construction and Demolition Waste Management Planning Required

- **Innovation:**
 - **LEED Accredited Professional:** 1

Cost Considerations

<table>
<thead>
<tr>
<th>Cost Category</th>
<th>Cost</th>
<th>Percentage of Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural</td>
<td>$7.95 million</td>
<td>18%</td>
</tr>
<tr>
<td>Electrical</td>
<td>$6.73 million</td>
<td>15%</td>
</tr>
<tr>
<td>Mechanical</td>
<td>$12.02 million</td>
<td>27%</td>
</tr>
<tr>
<td>Architectural</td>
<td>$18.00 million</td>
<td>40%</td>
</tr>
<tr>
<td>Total</td>
<td>$44.70 million</td>
<td>40%</td>
</tr>
</tbody>
</table>

Breakdown

- **Electrical Breakout:**
 - Power: 37%
 - Lighting: 37%
 - Communications: 13%
 - Emergency: 5%
 - Lighting: 4%

- **Mechanical Breakout:**
 - Mechanical: 76%
 - Plumbing: 17%
 - Mechanical: 13%
 - Electrical: 11%

- **Fire Protection:**
 - Detection: 3%
 - Suppression: 7%

- **Building Systems:**
 - Structural: 18%
 - Architectural: 40%
 - Mechanical: 27%
 - Electrical: 15%
 - Counterfort Wall: 6%
 - Basement Wall: 7%